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There have been several recent studies concerning feedforward net- 
works and the problem of approximating arbitrary functionals of a 
finite number of real variables. Some of these studies deal with cases 
in which the hidden-layer nonlinearity is not a sigmoid. This was 
motivated by successful applications of feedforward networks with 
nonsigmoidal hidden-layer units. 

This paper reports on a related study of radial-basis-function (RBF) 
networks, and it is proved that RBF networks having one hidden layer 
are capable of universal approximation. Here the emphasis is on the 
case of typical RBF networks, and the results show that a certain class 
of RBF networks with the same smoothing factor in each kernel node 
is broad enough for universal approximation. 

1 Introduction 

There have been several recent studies concerning the capabilities of 
multilayered feedforward neural networks. Particularly pertinent to this 
paper are results that show that certain classes of neural networks are 
capable of providing arbitrarily good approximations to prescribed func- 
tionals of a finite number of real variables. From the theoretical point 
of view, these studies are important, because they address the question 
of whether a satisfactory solution is yielded by some member of a given 
class of networks. More specifically, suppose we have a problem that we 
want to solve using a certain type of neural network. Suppose also that 
there exists a decision function f’ : ?RT -+ YP whose implementation as a 
network plays a central role in the solution of the problem. Imagine that 
we have a family G of functions mapping Er to 3P characterized by a 
certain structure and having certain elements (e.g., one might consider a 
set of multilayered perceptrons), and that we hope to solve the problem 
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by implementing some satisfactory member of G. The first question we 
need to consider might be: Is this family G broad enough to contain f 
or a good approximation of f ?  Obviously, attempts to solve the problem 
without considering this question might be very time-consuming and 
might even be fruitless. 

Several papers address this question for the case of multilayered per- 
ceptron models with sigmoidal nonlinearities, and affirmative answers 
have been obtained by showing that in a satisfactory sense the family G 
considered can actually approximate any decision function drawn from 
a certain large class (Cybenko 1989; Hornik et al. 1989). 

At the present time, with the advantages and limitations of mul- 
tilayered perceptron networks more transparent and with results con- 
taining comparative studies becoming available (e.g., Lippman 19891, re- 
search concerning different types of feedforward networks is very active. 
Among the various kinds of promising networks are the so-called radial- 
basis-function (RBF) networks (Lippman 1989). The block diagram of a 
version of an RBF classifier with one hidden layer is shown in Figure 1. 
Each unit in the hidden Iayer of this RBF network has its own centroid, 
and for each input II' = (xl. -cz>. . . , L,) ,  it computes the distance between .c 
and its centroid. Its output (the output signal at one of the kernel nodes) 
is some nonlinear function of that distance. Thus, each kernel node in the 
RBF network computes an output that depends on a radially symmetric 
function, and usually the strongest output is obtained when the input is 
near the centroid of the node. 

Assuming that there are 7' input nodes and m output nodes, the overall 

output 

*2  
Input 

Figure 1: A radial-basis-function network. 
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response function without considering nonlinearity in an output node has 
the following form: 

where A4 t N the set of natural numbers is the number of kernel nodes 
in the hidden layer, M/, E PrL is the vector of weights from the ith kernel 
node to the output nodes, : I :  is an input vector (an element of W), f< 
is a radially symmetric kernel function of a unit in the hidden layer, zi 
and CT, are the centroid and smoothing factor (or width) of the ith kernel 
node, respectively, and : [O. co) ---t !R is a function called the activation 
function, which characterizes the kernel shape. 

A gaussian function is often used as an activation function, and the 
smoothing factors of kernel nodes may be the same or may vary across 
nodes. 

In this paper, RBF networks having the representation 1.1 are stud- 
ied. Strong results are obtained to the effect that, under certain mild 
conditions on the kernel function K (or the activation function g), RBF 
networks represented by 1.1 with the same ‘T; in each kernel node have 
the capability of universal approximation. Cybenko (1989) also consid- 
ers feedforward networks with a single hidden layer of kernel functions. 
However, only L’ approximation is considered in the corresponding part 
of Cybenko (1989), and only the case in which the smoothing factors 
can vary across nodes is addressed. A detailed comparison is given in 
Section 3. 

This paper is organized as follows: In Section 2 our main results are 
presented, and in Section 3 a discussion of our results is given. 

In this section, we consider the approximation of a function by some 
element of a specific family of RBF networks. 

Throughout the paper, we use the following notation and definitions, 
in which N, !R and !R“ denote the set of natural numbers, the set of real 
numbers, and the set of real ~-vectors, respectively. Let L T ’ ( W ) ,  Lm(Kr), 
C(%“), and C,.(!Rr), respectively, denote the usual spaces of %-valued 
maps f defined on !Rr such that f is pth power integrable, essentially 
bounded, continuous, and continuous with compact support. The usual 
Lr’ and L” norms are denoted by 1 1  . \ I p  and 1 1  . , respectively. The 
integral of f’ E L’(IfE”) over a Lebesgue measurable set A in !RT is written 
as JA f ( ~ : ) d ~ :  or, if f is a function of several variables and, say, f ( u ,  .) E 
L1(W) we write JA ! (a ,  : r ) h  to denote the integral of f ( u ,  .) over A. The 
convolution operation is denoted by ” *,” and the characteristic function 
of a Lebesgue measurable subset A of 97 is written as 1 ~ .  
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The family of RBF networks considered here consists of functions 
y : !R' + !R represented by 

(2.1) 

where M E N ,  c > 0, illi E 32, and z ,  E 92' for i = 1.. . . . M .  We call this 
family S K .  

Note that 2.1 is the same as 1.1, with the exception that the smoothing 
factors in all kernel nodes are same, and the output space is R instead of 

It will become clear that the extension of our results to multidimen- 
sional output spaces is trivial, and so we consider only a one-dimensional 
output space. 

We will use the following result, which is a slight modification of a 
theorem in (Bochner and Chandrasekharan 1949, p. 101). 

Lemma 1. Let f E U'(F), p E [I. a), and let 4 : P' + !R be an inte- 
grable function such that JRv 4(z)dz  = 1 . Define de : g r  -+ Y? by d C ( z )  = 
(l/ey)4(x/e) for 6 > 0. Then 1 1  $ e  * f - f ] I P +  0 as f + 0. 

Proof. Note that $e E L ' ( F ) .  By a direct extension from 8 to F of a 
standard theorem in analysis (Bochner and Chandrasekharan 1949, p. 991, 
one has $ e  * f E L P ( F ) ,  which is used below. 

By a change of variable, 

Thus, 

With q defined by l / p  + l / q  = 1, 

by Fubini's theorem and Holder's inequality. 
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Since 1 1  f(. - a)  - f(.) 1Ip,1 2 11 f l i p  and translation is continuous in 
Lp(8') (see Bochner and Chandrasekharan 1949, p. 98, and consider its 
direct extension to 3') we have 

I I  & * f - f Ilp+ 0 as + 0 

by Lebesgue's dominated convergence theorem. This proves the lemma. 
Our Theorem 1 (below) establishes that, under certain mild conditions 

on the kernel function K ,  RBF networks represented by 2.1 are capable 
of approximating arbitrarily well any function in L J ' ( F ) .  

Theorem 1. Let K : !RT + !R be an integrable bounded funcfion such that K 
is continuous almost everywhere and $%,. K ( x ) d x  # 0. Then the family SK is 
dense in LJ' (R') for every p E [ 1 co) . 

Proof. Let p E [l, co), f E L"(R'), and c > 0. 
Since Cc(P') is dense in L p ( 8 ' )  (Rudin 1986, p. 69), there exists an 

fc E Cc(8')  such that 1 1  fc - f [ I p <  ~ / 3 .  We will assume below that fc is 
nonzero. Notice that this involves no loss of generality. 

Let 4 : R' -, R be defined by $(x) = (1/ JRT.K(a)dcu) . K ( x ) ,  for x E R'. 
Then $ satisfies the conditions on $ in Lemma 1. Thus, by defining 
I& : P + R as in Lemma 1, we obtain 1 1  $,, * fc - fc l l P +  0 as + 0. 
Therefore, there is a positive (T such that 1 1  #u * f c  - fc I t p <  4 3 .  

Since fc has compact support, there exists a positive T such that 
suppf. c [-TIT]'. Note that $,,(a - .)fc(.) is Riemann integrable on 
[-T, TI', because it is continuous almost everywhere and is bounded by 
II 40 llm . II  f c  IIOO . 

Define 71, : R' ---+ by 

where the set {cxi E X' : i = 1,2, .  . . , n'} consists of all points in [-TI TI' 
of the form [-T + (ZilT/n), . . . , -T + (2irT/?2)], il, i2,. . . , i, = 2 , 2 , .  . . ,n. 
Note that vn (a )  is a Riemann sum for j'-T,TIT$u(a - z)f,(z)dz, and 
J[-T,~p &(a - z ) f c ( z )dx  = Je7 b ( a  - z ) f , (x )dx  = ($,, * f.)(cy). Thus, for 
any cy E R', w,(a) + (4,, * f.)(cy) as n -, 00. Since $g * f. E L p ( W ) ,  there 
is a positive Tl such that 

Since 4D is bounded and 4,, E L1(W)l we have $,, E LP(R'). Thus, there 
exists T2 > 0 such that 
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Note that I O,~((Y) / < I /  . fr  l l m  (2T)r(1/ri’)X$1 1 p m ( o - o L )  1 .  By Jensen’s 
inequality (Rudin 1986, p. 62), 

Therefore, 

Define To = max(T1. Tz + T ) .  Using 1 ot3 /I T for all J E { 1.2.. . . . I.}, 

and so 

1 / l , > ( f Y )  1 ”  do  < (f/9)” (2.2) 

Also, 

by the dominated convergence theorem. Thus, there is an N E 
which 

for 
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From the above, / /  V N  ~ f \I,,< c .  Since 

with 

the proof is complete. 
By K radially symmetric, we mean that 1 1  .I' 112=11 g 112 implies K ( J )  = 

K ( y ) .  In this case, the activation function 9 : [O. m) -+ Y? is obtained by 
defining y ( d )  = K ( z ) .  where z is any element of 3? such that / I  r: /I*= d .  
Therefore, in the case of radial symmetry, 2.1 can be written as 

Note that there is no requirement of radial symmetry of the kernel 
function K in the above theorem. Thus, the theorem is stronger than 
necessary for RBF networks, and might be useful for other purposes. 
Similarly, in the following theorem and corollaries, radial symmetry of 
the kernel function K is not assumed, even though we are interested 
primarily in radial-basis-function networks. 

If we interpret the term "radially symmetric" more generally than 
literally, then we may say that K is radially symmetric with respect to 
1 1  / /  if 1 1  L l l=ll g / I  implies K( r )  = K ( q ) .  where 1 1  . 1 1  is some norm defined 
on S r .  With this generalization in mind, we sometimes use I /  .I' - z, I/ for 
the distance between r and z ,  instead of 1 1  s - z ,  112. 

A slight modification of Theorem 1 given below addresses the case in 
which the function f we wish to approximate with an RBF network is 
not an element of L p ( ( z r z ' ) ,  but an element of LfUc(?J?) for some p E [l. m). 
Here the locally-lp space Lkc(3?), 1 5 1) < 03 is defined as the set of all 
measurable f : P 3 8 such that f . l[-N,N~r t L " ( 8 ' )  for every N E N.  
One way to define a metric on L k C ( F )  is by 

The following is direct corollary of Theorem 1. 

Corollary 1. Let K : P' -+ 8 be an integrable bounded function such 
that K is continuous almost everywhere and Js, K ( r ) d ~  # 0. Then the 
family S K  is dense in LX, (W) for every p t [l . co) . 
Proof. Let p E [l, 03), f E LL,(F) .  and 6 > 0. Choose E N such that 
c,"==,+l 2-" < €12. 
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Since f . 1[-m,m~7 E LP(R'), by Theorem 1 there is a 2, E SK such that 
1 1  f .1 [ -m,mp - 21 lip< t/2. Thus, 

m 

PIoc(f1v) I 5 2-" + c 2-" I I  (f - v) * L , n p  Ilp 
n=.m+l "=I 

< E/2+ I I  (f - v) .1[-m,.m]~ Ilp< 6 

which establishes the corollary. 
Theorem 1 and Corollary 1 concern approximation with respect to 

the LP metric or a metric induced by LP metric. We next give a theorem 
concerning the approximation of continuous functions with respect to a 
metric induced by the uniform metric. 

Theorem 2. Let K : R' -+ R be'an integrable bounded function such that K 
is continuous and JRr K(x)dx # 0. Then the family SK is dense in C(R') with 
respect to the metric d defined by 

Proof. Let f : R' + R be any continuous function, and E > 0. Define 
4 : RT + R by normalizing K ,  and define 4u : R' -+ R for 0 > 0 as in the 
proof of Theorem 1. 

Pick a natural number m such that 2-" < ~ / 3 ,  and then choose a 
positive T such that T > m. 

Since f is continuous on the compact set [-m,m]', we can obtain a 
nonzero continuous function f : R' -+ R with the property that f(z) = 
f(3:) for 3: E [-m, m]', and f(z) = 0 for z E R' \ [-T, TI'. Note that f is 
bounded and uniformly continuous. 

Using 4 E L1(X'), pick a positive To such that 

Since f is uniformly continuous, there is a 6 > 0 for which 1 1  x - y 
implies 

6 

(2.5) 

Choose 0 > 0 such that 11 oz ) I 2<  6 for all 3: E [-TO, TO]'. Let a E [-m, m]'. 
Then using 2.4 and 2.5, 
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6, * j ) ( ( i )  = O,(O - r ) f ( r ) d r  Define ~l~~ : X r  + 8 by 

where the set ( 0 ,  E 2' : 1 = 1.2.. . , . 1 1 ' )  consists of all points in [-T. TI' 
of the form [-T + (2/1T/r1).  . . . . -T + (2/,.T/n)], 1 1 . .  . . . I ,  = 1..  . . . n .  

Since the map (5 .  7.) H @ n ( ~ s  - x)f(z) is uniformly continuous on 
[--1r1. rn]? x [-T. TI' ,  there is a 60 > 0 such that 4 E [ - - / I / .  r ~ ] ~ ,  I .  !j E [-T. TI' 
with 1 1  .I' - 11 / j ~ <  bo implies I $,(s - . r ) f ( s )  - & ( s  - y)f(y) /<  ~ / 3 ( 2 T ) ' .  It 
easily follows that for n > 2&1'/&, 

(2.7) 

Choose N E N such that N > 2\/TT/bo. Then using 2.6 and 2.7, 

I O,V(O) - ~ ( c P )  I< 2t/3 

in which (I E [ - w .  w ] '  is arbitrary. Since I (  r )  = / ( . I  ) for .I' E [-m. m ] ' ,  

ri=m+l 

which finishes the proof. 
The statement in Theorem 2 is equivalent to the statement that SK is 

uniformly dense on compacta in C(8') under the indicated conditions on 
K .  That is, under the conditions on 11' of Theorem 2, for any continuous 
function f : P --i 32, for any t > 0, and for any compact subset C c 8', 
there exists a q E SK such that / /  ( q - f )  .Ic / I 2 <  F. Thus, by a useful rela- 
tionship between uniform convergence on compacta and convergence in 
measure (Hornik et al .  1989, lemma 2.2), we have the following corollary: 

Corollary 2. Let p be a finite measure on X". Then under the conditions 
on K of Theorem 2, the family Sh is dense in C ( P )  with respect to the 
metric p p  defined by ~ , ~ ( f . y )  = inf{f > 0 : / ! { . I .  t P :I f ' ( .r)  - , 9 ( ~ )  />  
f}  < E}. 

3 Conclusions and Discussion 

The results in Section 2 establish that under certain mild conditions on 
the kernel function, radial-basis-function networks having one hidden 
layer and the same smoothing factor in each kernel are broad enough for 
universal approximation. This provides an analytical basis for the design 
of neural networks using radial basis functions. 



Radial-Basis-Function Networks 255 

To the extent that the results of this paper bear on the approximation 
of a function in L'jR') with a finite sum C,"=, w, . K ( -  - zz/az)  of kernel 
functions, there is some overlap of a part of Cybenko (1989) and this 
study. Using a theorem due to Wiener (Rudin 1973, p. 210) and the 
pertinent argument used in Cybenko (1989), it can be shown that the 
set {C,"=, w, . K ( .  - z,/(T,) : M E N ,  w, E 3, z, E R', 0, # 0) is dense 
in L1(X'), under the condition that K E L'(X') and JRvK(x)dx  # 0. 
This certainly shows the capability of certain RBF networks with respect 
to approximating an arbitrary L' function. However, note that here the 
smoothing factor (T, in each kernel node has a full degree of freedom, that 
is, the 0,s can have different values across the kernel nodes. Thus, the 
major differences between this L' approximation and the results given 
in Section 2 concern the class of RBF networks considered as well as the 
metrics used.' 

From the theoretical point of view, this condition concerning the same 
smoothing factor is often very important, because many studies are con- 
cerned with approximation using the functions C,"=, w, . h( 1 1  . - z, 1 1 )  
(Broomhead and Lowe 1988; Powell 1985; Sun 19891, and radial basis 
functions with the same smoothing factor in each kernel node are often 
used in real applications (Broomhead and Lowe 1988). In connection 
with studies of approximation using radial basis functions, the recent re- 
sults concerning the solvability of radial-function interpolation (Powell 
1985; Sun 1989) are interesting, because they are directly applicable to 
the training of neural networks of the type we have focused attention 
on. These studies (Powell 1985; Sun 1989) are concerned with the inter- 
polation of data by the m functions h( 1 1  . - z, I/), z = 1,. . . , m, when the 
data (z,,  y,) with z, E R', yz E R, z = 1,. . . , m are given. More precisely, 
the existence of a unique interpolant Czl w, . h( [I . - z, 1 1 )  for distinct data 
(z , ,  9,) with z, E R, y, E %,2 = I , .  . . , m has been shown for a certain class 
of pairs of h and 11 . 1 1 .  This existence leads us to an interesting obser- 
vation: Suppose that training data (z,, yz), z = 1,. . . , m are given, where 
z ,  E X',y, = 1 if z, E A, yt = -1 if z, E B, and A , B  g R' with A n  B = 0. 
From the given data, construct a new data set z,* E R", z = 1,. . . , m, by 
defining 

Note that z; E R", while zi E 8'. Then by the above existence property, 

'In this connection, Wiener's theorem referred to above can also be used to give a 
direct proof that L' approximations can be achieved with linear combinations of trans- 
lates of any element of L'(IR') whose Fourier transform never vanishes. The gaussians 
exp(-a / /  . 11;) are examples of such functions. 
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for certain classes of y and 1 1  . 11,  there exist A, E 3. J = 1.. . . . r r /  such that 
for each I E { 1.2. . . . , n)} .  

Thus, with A = (A, .  A2. .  . . . A,,,)T, z h h  > 0 if zL E A. and z,*A < 0 if z ,  E B. 
In other words, { (zt*. g L )  : I = 1.2. . . . , nr} is linearly separable in this 
case. Therefore, the perceptron learning rule suffices for the training of 
this network. 

Additional related papers are (Hartman et al. 1990; Sandberg 1991). 
The work of Hartman et al. (19901, which appeared after this work was 
completed, considers gaussian functions and approximations on com- 
pact subsets of X' that are convex. It is shown there that networks with 
a single layer of gaussian units are universal approximators. In Sand- 
berg (1991) more general results for gaussian functions are given as a 
special case of propositions concerning the uniform approximation of 
functionals defined on compact subsets of spaces that need not be finite 
dimensional. Also, it is observed in Sandberg (1991) that (what might 
be called) "function-space feed forward neural networks" with an input 
layer of bounded linear functionals and just one hidden nonlinear layer 
are universal approximators of real continuous functionals on compact 
subsets of a normed linear space. 
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